10,734 research outputs found

    Nucleation in binary polymer blends: A self-consistent field study

    Get PDF
    We study the structure and thermodynamics of the critical nuclei in metastable binary polymer blends using the self-consistent field method. At the mean-field level, our results are valid throughout the entire metastable region and provide a smooth crossover from the classical capillary-theory predictions near the coexistence curve to the density functional predictions of Cahn and Hilliard (properly transcribed into expressions involving the parameters of the binary polymer blends) near the spinodal. An estimate of the free energy barrier provides a quantitative criterion (the Ginzburg criterion) for the validity of the (mean-field) self-consistent approach. The region where mean-field theory is valid and where there can be a measurable nucleation rate is shown to be poorly described by the existing limiting theories; our predictions are therefore most relevant in this region. We discuss our results in connection with recent experimental observations by Balsara and co-workers

    Geometric Mean Neutrino Mass Relation

    Get PDF
    Present experimental data from neutrino oscillations have provided much information about the neutrino mixing angles. Since neutrino oscillations only determine the mass squared differences Δmij2=mi2−mj2\Delta m^2_{ij} = m^2_i - m^2_j, the absolute values for neutrino masses mim_i can not be determined using data just from oscillations. In this work we study implications on neutrino masses from a geometric mean mass relation m2=m1m3m_2=\sqrt{m_1 m_3} which enables one to determined the absolute masses of the neutrinos. We find that the central values of the three neutrino masses and their 2σ2\sigma errors to be m1=(1.58±0.18)meVm_1 = (1.58\pm 0.18){meV}, m2=(9.04±0.42)meVm_2 = (9.04\pm 0.42){meV}, and m3=(51.8±3.5)meVm_3 = (51.8\pm 3.5){meV}. Implications for cosmological observation, beta decay and neutrinoless double beta decays are discussed.Comment: 7 pages. Talk given at COSPA06. A reference adde

    Gaussian Process Model Predictive Control of An Unmanned Quadrotor

    Full text link
    The Model Predictive Control (MPC) trajectory tracking problem of an unmanned quadrotor with input and output constraints is addressed. In this article, the dynamic models of the quadrotor are obtained purely from operational data in the form of probabilistic Gaussian Process (GP) models. This is different from conventional models obtained through Newtonian analysis. A hierarchical control scheme is used to handle the trajectory tracking problem with the translational subsystem in the outer loop and the rotational subsystem in the inner loop. Constrained GP based MPC are formulated separately for both subsystems. The resulting MPC problems are typically nonlinear and non-convex. We derived 15 a GP based local dynamical model that allows these optimization problems to be relaxed to convex ones which can be efficiently solved with a simple active-set algorithm. The performance of the proposed approach is compared with an existing unconstrained Nonlinear Model Predictive Control (NMPC). Simulation results show that the two approaches exhibit similar trajectory tracking performance. However, our approach has the advantage of incorporating constraints on the control inputs. In addition, our approach only requires 20% of the computational time for NMPC.Comment: arXiv admin note: text overlap with arXiv:1612.0121

    Probing scalar meson structures in χc1\chi_{c1} decays into pseudoscalar and scalar

    Full text link
    We evaluate the decay branching ratios of χc1→PS\chi_{c1}\to PS, in a quark model parametrization scheme, where PP and SS stand for pseudoscalar and scalar meson, respectively. An interesting feature of this decay process is that the ccˉc\bar{c} annihilate via the pQCD hair-pin diagram is supposed to be dominant. Hence, this decay process should be sensitive to the quark components of the final-state light mesons, and would provide a great opportunity for testing the mixing relations among the scalar mesons, i.e. f0(1370)f_0(1370), f0(1500)f_0(1500) and f0(1710)f_0(1710), by tagging the final state pseudoscalar mesons.Comment: 9 pages and 6 eps figures; Enhanced discussion on the dominance of hair-pin diagram is added. Revised version to appear in IJMP
    • …
    corecore